
LA-UR -86-4356

TITLE. EXPERIENCESAND RESULTSMULTITASKINGA HYDRODYNAMICSCODE
ON GLOBALAND LOCALMEMORYMACHINES

LA-uR--86-4356

DE87 003759

AuTHOn(S) DavidA. Mandell(X-7)

WBM~TED 70. 1~87 InternationalConference on
ParallelProcessing
August17-21,1987
St. Charles,Illinois

DI.SC’LAIMER

Lmlwmilos LosAlamosNational Laborator
bsAlamos,New Mexico 8754 !$

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

EXPERIENCES AND RESULTSMULTITASKINGA HYDRODYNAMICSCODE ON
GLOBALAND LOCALMEMORYMACHINES

by

DavidMandell
CcmputatlonalPhysicsGroup

AppliedTheoreticalPhyaiceDivision
Los AlamosNationalLaboratory
Los Alamos,New Mexico67545

ABSTRACT

A one-dimensional,time-dependentLagrangian hydrodynamic
code using a Godunovgolutionmethodhas beenmultitaakedfor the
Cray X-MP/48,the Intel lPSC hypercube,the AlllantFX eeriea and
the IBM RP3 cunputers. Actualmultitaskingresultshave beenob-
tainedfor the Cray, Intel and A::ilnt computers and simulated
results were obtained for the Cray and RP3 ❑achines. The dif-
ferences in the methods required to ❑ultitask on each of the
❑achines1s discussed. Resultsare presentedfor a sampleproblem
involvinga shockwave moving down a channel. Compariaone are
made between theoreticalspeedups,prediotedby Amdahl~slaw, and
the actualspeedupsobtained. The problems of debugging on the
differentmachinesare also described.

I. INTRODUCTION

In order to understand the methods required in multitaskingon dif-

ferentparallelproueraora,a one-dimensional,time-dependent Labrangian

code was multitaskedfor a Cray x-MP/48,an IntellPSC hypercube,an Alllant

FX/6 and an IBM RP3.

The Cray x-MP/48 has four processorssharinga commonmemoryand the

Intelhyperoodehas up to 128 nodes (processors),each similar to an IBM

PC/AT, with local memory, Multitasking on the two maohinenis therefore

substantiallydifferent. One purposeof thiswork was to understand these

differences, The Cray multitasking was done using the Los Alamos

MultitaskingLibraryand simulator[11. The Los Al&moeLibrary1s a euper-

aet of the Cray multitaskinglibrary[2]. Referenoea3 and 4 describethe

uae of the IntellPSC hypiiroubeand the Fortranimplementedon the machine.

The Alliant FX/seriesof vector,parallelcomputers [5] , now parallel

processingwith verylittleefforton the part of the programmer. In this

case only a one line changewas requiredto the UNIX*serialversionof the

code.

The RP3 is currently being designed and built at the IBM ThomasJ.

WatsonResearchCenter. A generaldescriptionof the machine 1s given in

Ref. 6 and the simulator,EPEX,is discussedin Ref. 7. Initially,the RP3

will have64 processorswith the uniquefeaturethat the fraction of total

memory used as local memorycan be specifiedat run time. The coupledhy-

perbolic partial differential equations for the conservation of ❑ass,

momentumand energyare describedby Rlchtmyerand Morton[8] and summarized

in the next section.

The Fortran c?hangesneeded in order to multitaskon each maohlneare

then described. (Theoriginalcode~~asa serialco~ewrittenfor the Cray.)

Finally,the resultsare presentedand discussed.

BASICEQUATIONS

The one-dimensional hyperbolic equ~tionainvolvethreeequationafor

four unknowns. The !’ou”thunknown1s found from the equation-of-stateof

the material,which is an idealgas in this work [8]. The equationsare

where

U - [;l and F(U) - Vo[-; 1
E pu

2

V - specific volume,

VO= initialspecificvOiume; given,

u = velocity,

E - totalenergy,

p = pressure,

t _ time,and

x = position

V, u and E are foundfrom the aboveequationsand then p is found from the

idealgaa equation

p=(Y - 1) I/v

whore

~mE-;u2 and Y, the ratio of specifloheats,is 1.4 in this case.

FINITE-DIFFERENCEEQUATIONS ‘

The dependentvariables (u, V, p, and E) ● re coil-centered and the

Riemann pressures and velocities(P12,and U12),

solution[9], are at the cell edges. For the Jth

cell center,

(Note,Ref. 8 has ● sign errorin this●quatlon).

FJ+l/2- ‘o

.

-“’~j+m

y+l/2

1(P12 ~ wj+l/2

Where Ar 1s the inltiul dlstanoe between oell

obtainedfrcm the Gofiunov

oell, where j is at the

edgee ●nd P12 and W12 are

foundby usingthe ●ppr-oximateRiemannsolvergivenin Ref. 9,

3

CODE CHANGES

Changes fr”in the Cray serial code, in order to mulltask on each

machine, are described in this section.

CRAY x-MP/48

The code was multitasked by dividing the calculations of the serial

computational cells into a specified number of tasks in a self-scheduling

manner . That is, the n“xnber of computational cells per task is determined

during execution. For example, with 100 computational cells which were used

in the base case runs !ur this work, and four processors, 25 cellg are

scheduled at a time.

Only a small number of changes were required to the sequential code in

order to implement the Los Alamos Multitasking Library constructs. Tasks

are initiated at two points in the program for each cycle. First tasks are

started to calculate the new Riemann pressures and velocities at each cell

interface from the old cell-centered variables. Since these calculations

cross task boundaries, they have to be completed before the seconci set of

taska are started, which calculate the new cell-centered variables.

The only significant debugging problem that occurred in creating the

Cray multitasking code involved two Fortran lines. In the serial code two

lccal variables were set only for the processor doing the first computa-

tional ~ellso The prccesso~(s) doing the rest of the cells had undefined

values fcr these variables and the calculation became unstable. This

trivial error in the multitasked code , which runs correctly on one prcces-

scr, took a long time to find and illustrates the problems of debugging even

a small multitasked code.

lPSC Hyeroube

Two programs are needed for the cube, a host program that ccntrolg the

job and does the 1/0 and a node program which is loaded on each node of the

oube that is being used in the ourrent Job. The node program does the

execution for a particular part of the calculation, similar to the task on

the Cray,

Since the cube 1s a local memory machine, in contrast to the Cray’s

global memory, messages must be passed between nodes during each time cycle.

Each node needs to get ita boundary conditions fran adjacent nodes,

Fortran chafigesto the serialcodewere requiredin orderfor the code

to compileon the cube. Namelistis not allowedin the cube. Also slashes

and doublequotesare not acceptablein formatstatements. In order to

execute,the 1.OE-50Sin a Cray code subroutinehad to be changedsince they

causedunderflow on the cube. Underflowerrorsoccurredat the pointwhere

the solutionsgo to zero so checkshad to be insertedand the values of the

variables were not allowedto be smallerthan 10-sO. The Cray conditional

vectormergesubroutinewas replacedby a Fortranequivalent. Thesechanges

did not effectthe results.

Sane problemsoccurredin debuggingbecausethe hardware and software

were new. It was necessary to write ❑essages to a log file in orderto

tracethe code flow and determinethe locationof executionerrors.

ALLIANT FX/6

The startingpointfor multitaskingon the Alliantwas a serialversion

of the code running on a VAX/780 underUNIX. Only two minor Changeawere

required. Doublequotesin formatstatementshad to be changed to ai~gle

qunteaand a singleline directivehad to be addedto tell the compilerthat

a aubroutiriecall in a DO loopd!.dnot have a dependency. The entireeffort

to obtaina correct multitasked code on the Alliantwas tri!ial.

RP3

The serial code discussedabovewas multitaskedfor the RP3 simulator

by Dr. FrederlcaDarema-Rogersof the IBM ThomaaJ. UataonResearchCenter.

From the codelistings,the changesappearverystraightforward.

PZSULTSAND DISCUSSION

The results of this workare a comparisonbetweenthe machinesof the

following:

1) The difficulty ofloonvertlng tho serialcodeto the multitasking

code;

2) globalmemoryvs localmemory;

3) debuggingproblems;and

4) Bpeedupsand efficiency.

Tho epeedup,S, la de~lnedas

5

S - time for nonparallelcode to run (1 processor)
timefoP parllelcode to run (NP processor)

It shouldbe notedthat the numeratoris not the one processor multi-

tasked code time. The overhead due to multitasking, which may be

substantialin some cases,has to be consideredas a penaltyin the speedup;

and, thus the serial time shouldbe used in the numerator. The efficiency

is the speedupdividedby the numberof processors

e - S/NP

The theoretical speedupcan be obtainedfrom Amdahl’slaw if the frac-

tion of the code that can be made parallelis obtainedfrom a serialrun.

This can be used to determineif it is worthwhileto ❑ultitaska given code.

Amdahl~slaw is

s. 1

1 - p + p/Np

where

p 1s the fractionparallel

NP is the numberof processors

and S is the speedup.

The multitaakin~resultsobtainedon the Cray x-MP/48for 190computa-

tional cells are shown in Table I. The-simulated reaulta are in good

agreement with the actualresultsobteinedin a dedioatedenvironment;that

is, with no otherjobs running. Aa the numberof procemea lnoreaaed,vec-

tor lenghts deoreaeed, In orderto see how big this effectwas, the aerial

and multltaskedoodeswere rerunwith the vectorlzatlonturned off. These “

apeedupa were slightly higherthan the veotorspeedupsfGr four processors

and aboutthe same for two processors,but the times for running the same

problem a numberof timeswere inconsistentso the veotor/noveotorresults

are inoonoluelve.FOP four prooeseorsthe timesvaried as much as 18 per-

oent from the smallestto largesttimesfor a seriesof runs. The reaaonia

not yet known,but it maybe due to operatingsysteminteractions.

6

Table II shows the hypercube results for 100 and 1000carrputational

cells. Both actual result9 and predictions frcnn Anrdahlfn law, with no over-

head included, are shown. For 1000computationalcells,the predictedand

actualefficienciesare in close agreement indicating that the overhead,

which consistsalmostentirelyof node to node communicationis verysmall.

For 100 cells,the overheadbecomesa significantfractionof the total run

time. For 100 cells and 32 nodes the predictedefficiencydrops to about

38 percentif the ratio of communication to serial time is added to the

denominator of Amdahl’s law. Performance is obviouslybad when the com-

municationtime becomesa largefractionof the totaltime (about44 percent ‘

of the totaltime is in communicationfor 32 nodesand 100 cells).

Load balancingmust be carefullyconsidered in using the hypercube.

The first method of load balancingconsideredinvolveddividingthe total

numberof cellsby the number of nodes and letting the last node do the

remainder. For example,for 300 cellsthismethodresultsin 15 nodesdoing

18 cellsand 1 node doing 30 cells. Figure1 shows that thismethodof load

balancingresultsin poor speedupwhen the number of oells1s not closeto a

multipleof the numberof nodes. A better❑ethodof load balancingwould be

to divide the cells so that no node haa more than one cellmore than any

othernode. Figures2 and 3 show the effioienciaaaa a functionof the num-

ber of nodes (processors)and as a functioncf the numberof oells. for

largeproblemsthe efficiencyremainshigh even for 32 nodes.

Table III showsthe Alliantresultgfor one and six processors. As in-

dicatedpreviously,trivialchangeswere needed to multitask the code for

this machine. A apeedupof 3.87on 81x procesaorawaa obtainedfor the 100

cell baae case.

The RP3 is not yet runningand therefore TableIV showsonly simulated

results. The simulatorwas run on an IBM 3081 underVS Fortran. The serial

time is the actual 3081 time and not a simulated RP3 aerial time. The

apeedupaare thus relativevalues. The operatingsystem can have problems

when the numberof virtualprocessors1s greaterthan the numberof physical

processors(2). This can be seen in TableIV for eightprf,oeaaorawherethe

effiolencyexceedsthe f’ive prooeaoorvalue,whichwouldnot be expected.

A numberof observationsemergedfrom this work. The hyperoube with

only local memory required a eubatantlal amountof additionalooding for

7

messagepa99ingm It wouldbe desirableto have at leaat global memory be-

tweenpairsof nodes in order to pass bo.mdaryconditionsfrcinnode to node.

This featurewill be includedin the RP3. It woulda190 be ❑ore convenient

if 1/0 could be done from the hypercube nodes rather thanjust from the

host. (I am not consideringwritingfrom the nodesto a log file since

does not work if a systemprogramhas not been started.)

The automatic parallelizationfeatures of’the Alliant save 1

amountsof time and hopefullywill be in othersystemsin the future.

this

arge

Significantwork is neededto make debugging easier, especially for

large production codes,whichwe are currentlymultitasking.Localmemory

codesare easierto debugthan glObalmemorycodesand are certainlyeasier

to thinkaboutduringthe developmentphase.

In summary,a one-dimensional,time-dependentLagranglanhydrodynamics

oode involvingthe solutionof threecaupledhyperbolicpartialdifferential

equationshas beenmultltasked. The Cray actualresultsare in good agree-

❑ent with simulatorresults. This allowspredictionsto be ❑ade for future

Cray-like❑aohineswith ❑ore tha,nfour processors. The effect.of decreasing

vector lengths appears to be small,at leaet for the teat case considered.

When ccinmunicatlontimesare includedAmdahl’s law gives an indication of

how many hypercubenodescan be efficientlyused.

TABLE I

ACTUALAND SIMULATEDRESULTS FOR CRAYx-MP/48

100 COMPUTATIONALCELLS: VECTORCODE

Number Actual Results Simulated Results

of Processors - Efficiency(%) Speedup Efficiency

2 1.72 86 1.69 84.5

4 2.92 73 2.87 71.8

8 4.39 54.8

16 5.15 32.2

TABLE II

1-DHYDROCODE CUBE EFFICIENCY

Number Efficiency(%)

of MaximumPredicted Actual

Node9 100 oella 1000oells 100 cells 1000cells

2 98 ● 96 99.14 93.4 98.o

4 96.95 97.46 81.2 96,2

8 93.15 94.26 68.1 93.6

16 86.39 88.46 49.7 87.6

32 75.44 78.76 32.9 76.2

Number Time

of Processors (see)

TABLE III

TIMING RESULTS FOR ALLIANT*

1 72.4

6 18.7

These res!ult9were obtained

ApplicationsGroup,Los Alamos

Time for One Processor

Time

1

3.87

by Dr. Olaf Lubeck,

NationalLaboratory.

Percent

Efficiency

100

64.5

Computer Research and

10

TABLE IV

SIMULATEDTIMINGRESULTSFOR IBM RP3*

Numberof

Code Processors

Serial 1

14ultitasked 1

2

4

5

8

16

Time

(see)

44.4

54.0

33.0

17.8

16.9

9.1

6.5

SerialTime——
Time

1

.82

1.34

2.49

2.62

4.88

6.83

Percent

Efficiency

100

82

67

62

52.5

61.o

43.0

*Dr. FredericaDarema- Rogers,IBM ThomasJ. WatsonResearchCenterconverted

the code for ttieRP3 simulator and obtained the above r-suits.

11

1.

2.

39

4.

5.

6.

7.

8.

9.

E. Williams and F. Bobrowicz,‘Speedup Predictions For LargeScientific

ParallelProgrsmaon CrayX.-MP-Like Architectures,n Proceedings of the

1905 International Conference on Parallel Processing, St. Charles,

Illinois,August20-23,1985.

Multitasking User Guide, Cray CanputerSystemsTechnicalNote SH-0222,

Cray Research,Inc.,MendotaHeights,Minnesota,(1984).

IPSC User’s Guide, Intel Corporation, Order Number: 175455-003,

(October,1985).

Intel Fortran-286 User’sGuidefor XENIX 286 Systams,Ir,telCorporation

122196-001(1985).

Aliiant FX/SeriesFroductSummary,AlllantCunputerSyatcmaCorporation,

42 NagosPark,Acton,Mass. 01720,Juna, 1985.

G. F. Pfister et al., ‘The IBh Research ParallelProoeasurPrototype

(RP3): Introduction and Architeoture,W Prooeedingg of the 1965,

InternationalConferenceon ParallelProceoalng,St. Charlea,Illinois,

August20-23,1985.

J. H. Stone, F, Darema-Rogers, V. A. Norton, and 0. F. Pf’iater,

‘Introductionto VM/EPEXFortranPreprooesaorlnIBM T. J. WatsonResearoh

Center, Yorktown Heights, New York, RC 11407 (#51329),September30,

1985.

Robert D, Riohtmyer and K. U. Morton,“DlfferenoeMethodsfor Initi&l-

ValueProblema,rlIntersoienoePublishers,New York (1967).

John K. DukGwicz,“A General,Non-IterativeRiemannSolverfor Godunov’a

Method,~lJ. Canp.Phy.,g (1985),119-137.

12

.

- 1400’

Gibe The Pbr 16 Nbdes

D*SMJ460560

Fig. 1

6607i)08600601c

0m5ills
I

Effectof Load Balancingon
FlypercubeResults

o

lCO

90

m

m

a)

50

40

xl
o

cum Bmcmcl!r

100

I 1 I J I I

5 io 15 35

Number d Nodes

Fig. 2

I

Cube Efficiencyvs numberof
Nodes

la

9

a

‘n

6(I

5(J

40

30

20

CUBE EFFICIENCY
—

32nodes

1 1 1

0
J 1 I 1 I I i

1002003004(x)~6W~ 6009001000

Number of cells

Fig. 3 Cube Efficiencyvs Number of
Computational Celln

